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Extremely amenable groups

A topological group G is extremely amenable every G-action on
a compact Hausdorff space X has a fixed point, that is, x ∈ X
s.t. gx = x for all g ∈ G.

Examples (Pestov)

Homeo+([0, 1])

Aut(Q, <)

Iso(U, d)

FIRST
“Exotic groups” (Herrer–Christensen)
U(l2) (Gromov–Milman)

Lemma (Bodirsky–Pinsker–Tsankov)

Open subgroup of an extremely amenable group is extremely
amenable.
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Dana Bartošová Extreme amenability of linear isometries of G



Extremely amenable groups

A topological group G is extremely amenable every G-action on
a compact Hausdorff space X has a fixed point, that is, x ∈ X
s.t. gx = x for all g ∈ G.

Examples (Pestov)

Homeo+([0, 1])

Aut(Q, <)

Iso(U, d)

FIRST
“Exotic groups” (Herrer–Christensen)
U(l2) (Gromov–Milman)

Lemma (Bodirsky–Pinsker–Tsankov)

Open subgroup of an extremely amenable group is extremely
amenable.
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Connections with Ramsey theory

A (countable) structure A is ultrahomogeneous ←→ every
partial finite isomorphism can be extended to an automorphism
of A.

Theorem (KPT; NvT)

Aut(A) is extremely amenable ←→ finitely-generated
substructures of A satisfy the Ramsey property and are rigid.

Examples

(Q, <)

(R, <)

(C, C)

finite linear orders (Ramsey)

finite linearly ordered graphs (NR; AH)

finite Boolean algebras (GR)
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and approximate Ramsey theory

Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, Iso(M) is extremely
amenable ←→ finitely-generated substructures satisfy the
approximate Ramsey property.

Examples (B-LA-M)

G
(P, p)

finitely-dimensional normed spaces

finite-dimensional simplexes
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Gurarij space G

(1) separable Banach space

(2) contains isometric copy of every finite dimensional Banach
space

(3) for every E finite dimensional, i : E ↪→ G isometric
embedding and ε > 0 there is a linear isometry f : G //G

‖i− f � E‖ < ε

LUSKY
Conditions (1),(2),(3) uniquely define G up to a linear
isometry.

KUBIŚ-SOLECKI; HENSON
Simple proof - metric Fräıssé theory.
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Group of linear isometries

Isol(G) + point-wise convergence topology = Polish group

BASIS

E - finite dimensional subspace of G
ε > 0

Vε(E) = {g ∈ Iso(G) : ‖g � E − id � E‖ < ε}

BEN YAACOV
Isol(G) is a universal Polish group.

Katětov construction
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Approximate Ramsey property for ln∞’s

Theorem (B-LA-M)

d ≤ m
r - number of colours

ε > 0

∃n
for every colouring c : Emb(ld∞, l

n
∞) // {0, 1, . . . , r − 1}

there is i ∈ Emb(lm∞, l
n
∞) and α < r

i ◦ Emb(ld∞, l
m
∞) ⊂ (c−1(α))ε

Theorem (B-LA-M)

Iso(G) is extremely amenable.
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Pestov’s characterization of extreme amenability

G - topological group

f : G // R is finitely oscillation stable if ∀X ⊂ G finite and
ε > 0 ∃g ∈ G such that osc(f � gX) < ε.

Lemma (Pestov)

TFAE

G is extremely amenable,

every f : G // R bounded left-uniformly continuous is
finite oscillation stable.
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Dual Ramsey Theorem

Theorem (Graham and Rothschild)

For every k ≤ m and r ≥ 2, there exists n such that for every
colouring of the k-element partitions of n by r-many colours
there is an m-element partition X of n such that all k-element
coarsenings of X have the same colour.
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Approximate Ramsey property for finite-dimensional
normed spaces

E,F - finite dimensional spaces
θ ≥ 1

Embθ(E,F ) = {T : E // F : T embedding & ‖T‖
∥∥T−1

∥∥ ≤ θ}

Theorem (B-LA-M)

r - number of colours, ε > 0 // ∃H f.d. with Emb(F,H) 6= ∅
such that for every

c : Embθ(E,H) // {0, 1, . . . , r − 1}

∃i ∈ Embθ(F,H) and α < r such that

i ◦ Embθ(E,F ) ⊂ (c−1(α))θ−1+ε
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Urysohn space U

Theorem

Finite metric spaces satisfy the approximate Ramsey property.

Corollary (Pestov)

Iso(U) is extremely amenable.

Theorem (Nešetřil)

Linearly ordered finite metric spaces satisfy the (exact) Ramsey
property.
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Dana Bartošová Extreme amenability of linear isometries of G



Poulsen simplex P

(1) metrizable

(2) contains every metrizable simplex as its face

(3) for every two faces E,F of P with the same finite
dimension, there is an affine autohomeomorphism of P
mapping E onto F

LINDENSTRAUSS-OLSEN-STERNFELD
Properties (1),(2) and (3) uniquely determine P up to an affine
homeomorphism.

POULSEN
The set of extreme points of P is dense in P.

FACT
T : {0, 1}Z // {0, 1}Z the shift ⇒ T -invariant probability
measures form P
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homeomorphism.

POULSEN
The set of extreme points of P is dense in P.

FACT
T : {0, 1}Z // {0, 1}Z the shift ⇒ T -invariant probability
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Dana Bartošová Extreme amenability of linear isometries of G



Poulsen simplex P

(1) metrizable

(2) contains every metrizable simplex as its face

(3) for every two faces E,F of P with the same finite
dimension, there is an affine autohomeomorphism of P
mapping E onto F

LINDENSTRAUSS-OLSEN-STERNFELD
Properties (1),(2) and (3) uniquely determine P up to an affine
homeomorphism.

POULSEN
The set of extreme points of P is dense in P.

FACT
T : {0, 1}Z // {0, 1}Z the shift ⇒ T -invariant probability
measures form P

Dana Bartošová Extreme amenability of linear isometries of G



A projective characterization of P

Sn := positive part of the unit ball of ln1 – finite-dimensional
simplex with n+ 1 extreme points

Epi(Sn, Sm) := continuous affine surjections Sn // Sm

AH(P ) := group of affine homeomorphisms of P +
compact-open topology

(U) ∀n ∃φ : P // Sn – continuous affine surjection

(APU) ∀ε > 0 ∀n ∀φ1, φ2 : P // Sn ∃f ∈ AH(P ) with
d(φ1, φ2 ◦ f) < ε

Theorem (B-LA-M)

(U) + (APU) characterize P among non-trivial metrizable
simplexes up to affine homeomorphism.
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Approximate Ramsey property for P

Epi0(Sn, Sm) - continuous affine surjections preserving 0

Theorem (B-LA-M)

d ≤ m and r natural numbers and ε > 0 given // ∃n such that
for every colouring

c : Epi0(Sn, Sd) // {0, 1, . . . , r}

there is π ∈ Epi0(Sn, Sm) and α < r such that

Epi0(Sm, Sd) ◦ π ⊂ (c−1(α))ε

p - extreme point of P
AHp(P ) = {f ∈ AH(P ) : f(p) = p}

Theorem (B-LA-M)

AHp(P ) is extremely amenable.
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Universal minimal flows

G = Aut(A) – A ultrahomogeneous

G∗ = Aut(A∗) – A∗ ultrahomogeneous expansion of A
Finite substructures of A∗ satisfy the Ramsey property and are
rigid.

OFTEN M(G) ∼= Ĝ/G∗

Structure A M(Aut(A)) authors

S1
+ S1

+ Pestov

N linear orders on N Glasner and Weiss

random graph R linear orders on R KPT

Cantor space C maximal chains of
closed subsets of C

Glasner and Weiss

Lelek fan L ̂Homeo(L)/Homeo(L<) B-Kwiatkowska
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Universal minimal flow of AH(P )

Theorem (B-LA-M)

M(AH(P )) ∼= ̂AH(P )/AHp(P ) ∼= P
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Hilbert cube Q = [−1, 1]N

PROBLEM
What is the universal minimal flow of Homeo(Q)?

Q is homeomorphic to P.

Theorem (B-LA-M)

Homeo(Q) admits a closed subgroup with the universal minimal
flow being the natural action on Q.

Q with its natural convex structure.

Theorem (B-LA-M)

Aut(Q) is topologically isomorphic to {−1, 1}N × S∞.

Theorem (B-LA-M)

M(Aut(Q)) = {−1, 1}N × LO(N).
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Pseudo-arc P

Conjecture (Uspenskij)

The universal minimal flow of Homeo(P ) is its natural action
on the pseudoarc.

IRWIN-SOLECKI

(P, E) - P the Cantor set, E closed edge relation and P/E ∼= P

Aut(P) //Homeo(P ) continuous with dense image.

Lemma (B-Kwiatkowska; Solecki)

M(Aut(P)) is not metrizable.
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Lionel’s conjecture

Oligomorphic automorphism groups of countable structures
have metrizable universal minimal flows.

Good example

Aut(P) is NOT oligomorphic.
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Non-metrizable universal minimal flow

Theorem (Veech)

Locally compact groups have non-metrizable universal minimal
flows.

Good example

Aut(P) is NOT locally compact.
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Dana Bartošová Extreme amenability of linear isometries of G


