The group of linear isometries of the Gurarij space is extremely amenable

# Dana Bartošová $^1$ Jordi López-Abad $^2$ Brice R. Mbombo $^3$

<sup>1,3</sup>University of São Paulo

<sup>2</sup>ICMAT Madrid

#### When Topological Dynamics meets Model Theory July 1

The first author was supported by the grants FAPESP 2013/14458-9 and FAPESP 2014/12405-8.

《日》 《御》 《글》 《글》 - 글

(EA) Extreme amenability

• and a connection to Ramsey theory.

・ロン ・聞と ・ヨン ・ヨン

∃ 990

#### (EA) Extreme amenability

- and a connection to Ramsey theory.
- $(\mathbb{G})$  Gurarij space
  - group of linear isometries
  - approximate Ramsey propety for finite dimensional normed spaces

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

#### (EA) Extreme amenability

- and a connection to Ramsey theory.
- $(\mathbb{G})\$ Gurarij space
  - group of linear isometries
  - approximate Ramsey propety for finite dimensional normed spaces
- (S) Poulsen simplex
  - new characterization
  - group of affine homeomorphisms
  - approximate Ramsey propety for finite dimensional simplexes

#### (EA) Extreme amenability

- and a connection to Ramsey theory.
- $(\mathbb{G})$  Gurarij space
  - group of linear isometries
  - approximate Ramsey propety for finite dimensional normed spaces
- (S) Poulsen simplex
  - new characterization
  - group of affine homeomorphisms
  - approximate Ramsey propety for finite dimensional simplexes
- (M) Miscellaneous
  - Hilbert cube
  - Pseudoarc

A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is,  $x \in X$ s.t. gx = x for all  $g \in G$ .

A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is,  $x \in X$ s.t. gx = x for all  $g \in G$ .

#### Examples (Pestov)

• Homeo<sub>+</sub>([0,1])

(日) (四) (日) (日) (日)

A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is,  $x \in X$ s.t. gx = x for all  $g \in G$ .

#### Examples (Pestov)

- Homeo<sub>+</sub>([0,1])
- $\operatorname{Aut}(\mathbb{Q}, <)$

A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is,  $x \in X$ s.t. gx = x for all  $g \in G$ .

#### Examples (Pestov)

- Homeo<sub>+</sub>([0,1])
- $\operatorname{Aut}(\mathbb{Q}, <)$
- $\operatorname{Iso}(\mathbb{U}, d)$

A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is,  $x \in X$ s.t. gx = x for all  $g \in G$ .

# Examples (Pestov)Homeo<sub>+</sub>([0, 1])

- $\operatorname{Aut}(\mathbb{Q}, <)$
- $\operatorname{Iso}(\mathbb{U}, d)$

#### FIRST

"Exotic groups" (Herrer–Christensen)

A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is,  $x \in X$ s.t. gx = x for all  $g \in G$ .

#### Examples (Pestov)

- Homeo<sub>+</sub>([0,1])
- $\operatorname{Aut}(\mathbb{Q}, <)$
- $\operatorname{Iso}(\mathbb{U}, d)$

#### FIRST

"Exotic groups" (Herrer–Christensen)  $U(l_2)$  (Gromov–Milman)

A topological group G is extremely amenable every G-action on a compact Hausdorff space X has a fixed point, that is,  $x \in X$ s.t. gx = x for all  $g \in G$ .

#### Examples (Pestov)

- Homeo<sub>+</sub>([0,1])
- $\operatorname{Aut}(\mathbb{Q}, <)$
- $\operatorname{Iso}(\mathbb{U}, d)$

#### FIRST

"Exotic groups" (Herrer–Christensen)  $U(l_2)$  (Gromov–Milman)

#### Lemma (Bodirsky–Pinsker–Tsankov)

Open subgroup of an extremely amenable group is extremely amenable.

(日) (四) (日) (日) (日)

### Connections with Ramsey theory

A (countable) structure  $\mathcal{A}$  is ultrahomogeneous  $\longleftrightarrow$  every partial finite isomorphism can be extended to an automorphism of  $\mathcal{A}$ .

э

#### Theorem (KPT; NvT)

 $\operatorname{Aut}(\mathcal{A})$  is extremely amenable  $\longleftrightarrow$  finitely-generated substructures of  $\mathcal{A}$  satisfy the Ramsey property and are rigid.

#### Theorem (KPT; NvT)

 $\operatorname{Aut}(\mathcal{A})$  is extremely amenable  $\longleftrightarrow$  finitely-generated substructures of  $\mathcal{A}$  satisfy the Ramsey property and are rigid.

#### Examples

● (ℚ, <)

• finite linear orders (Ramsey)

#### Theorem (KPT; NvT)

 $\operatorname{Aut}(\mathcal{A})$  is extremely amenable  $\longleftrightarrow$  finitely-generated substructures of  $\mathcal{A}$  satisfy the Ramsey property and are rigid.

#### Examples

(Q, <)</li>
(R, <)</li>

- finite linear orders (Ramsey)
- finite linearly ordered graphs (NR; AH)

#### Theorem (KPT; NvT)

 $\operatorname{Aut}(\mathcal{A})$  is extremely amenable  $\longleftrightarrow$  finitely-generated substructures of  $\mathcal{A}$  satisfy the Ramsey property and are rigid.

#### Examples

- $(\mathbb{Q}, <)$
- $(\mathcal{R}, <)$
- $(C, \mathcal{C})$

- finite linear orders (Ramsey)
- finite linearly ordered graphs (NR; AH)
- finite Boolean algebras (GR)

#### Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, Iso(M) is extremely amenable  $\leftrightarrow \rightarrow$  finitely-generated substructures satisfy the approximate Ramsey property.

#### Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, Iso(M) is extremely amenable  $\leftrightarrow \rightarrow$  finitely-generated substructures satisfy the approximate Ramsey property.

#### Examples (B-LA-M)

• G • finitely-dimensional normed spaces

#### Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, Iso(M) is extremely amenable  $\leftrightarrow \rightarrow$  finitely-generated substructures satisfy the approximate Ramsey property.

#### Examples (B-LA-M)

- G finitely-dimensional normed spaces
- (P, p) finite-dimensional simplexes

# Gurarij space $\mathbb G$

(1) separable Banach space

∃ 990

# Gurarij space $\mathbb G$

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space

(日) (圖) (필) (필) (필)

# Gurarij space $\mathbb G$

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space
- (3) for every E finite dimensional,  $i: E \hookrightarrow \mathbb{G}$  isometric embedding and  $\varepsilon > 0$  there is a linear isometry  $f: \mathbb{G} \longrightarrow \mathbb{G}$

$$\|i - f \upharpoonright E\| < \varepsilon$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

# Gurarij space $\mathbb{G}$

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space
- (3) for every E finite dimensional,  $i: E \hookrightarrow \mathbb{G}$  isometric embedding and  $\varepsilon > 0$  there is a linear isometry  $f: \mathbb{G} \longrightarrow \mathbb{G}$

$$\|i - f \upharpoonright E\| < \varepsilon$$

#### LUSKY

Conditions (1),(2),(3) uniquely define  $\mathbb G$  up to a linear isometry.

< ロト ( 母 ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 )

# Gurarij space $\mathbb{G}$

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space
- (3) for every E finite dimensional,  $i: E \hookrightarrow \mathbb{G}$  isometric embedding and  $\varepsilon > 0$  there is a linear isometry  $f: \mathbb{G} \longrightarrow \mathbb{G}$

$$\|i - f \upharpoonright E\| < \varepsilon$$

#### LUSKY

Conditions (1),(2),(3) uniquely define  $\mathbb{G}$  up to a linear isometry.

KUBIŚ-SOLECKI; HENSON Simple proof - metric Fraïssé theory.

《日》 《曰》 《曰》 《曰》 [] []

 $\operatorname{Iso}_l(\mathbb{G})$  + point-wise convergence topology = Polish group

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへ⊙

 $\operatorname{Iso}_l(\mathbb{G})$  + point-wise convergence topology = Polish group

BASIS

Dana Bartošová  $\Box$  Extreme amenability of linear isometries of  $\mathbb{G}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへ⊙

 $\operatorname{Iso}_{l}(\mathbb{G})$  + point-wise convergence topology = Polish group

#### BASIS

 $\bullet~E$  - finite dimensional subspace of  $\mathbb G$ 

(日) (圖) (필) (필) (필)

 $\operatorname{Iso}_{l}(\mathbb{G})$  + point-wise convergence topology = Polish group

#### BASIS

- $\bullet~E$  finite dimensional subspace of  $\mathbb G$
- $\varepsilon > 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

 $\operatorname{Iso}_l(\mathbb{G})$  + point-wise convergence topology = Polish group

#### BASIS

 $\bullet~E$  - finite dimensional subspace of  $\mathbb G$ 

•  $\varepsilon > 0$ 

$$V_{\varepsilon}(E) = \{g \in \operatorname{Iso}(\mathbb{G}) : \|g \upharpoonright E - \operatorname{id} \upharpoonright E\| < \varepsilon\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

 $\operatorname{Iso}_l(\mathbb{G})$  + point-wise convergence topology = Polish group

#### BASIS

 $\bullet~E$  - finite dimensional subspace of  $\mathbb G$ 

 $\bullet \ \varepsilon > 0$ 

$$V_{\varepsilon}(E) = \{g \in \operatorname{Iso}(\mathbb{G}) : \|g \upharpoonright E - \operatorname{id} \upharpoonright E\| < \varepsilon\}$$

#### BEN YAACOV

 $\operatorname{Iso}_{l}(\mathbb{G})$  is a universal Polish group.

< ロト ( 母 ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 )

 $\operatorname{Iso}_l(\mathbb{G})$  + point-wise convergence topology = Polish group

#### BASIS

 $\bullet~E$  - finite dimensional subspace of  $\mathbb G$ 

 $\bullet \ \varepsilon > 0$ 

$$V_{\varepsilon}(E) = \{g \in \operatorname{Iso}(\mathbb{G}) : \|g \upharpoonright E - \operatorname{id} \upharpoonright E\| < \varepsilon\}$$

#### BEN YAACOV

 $\operatorname{Iso}_{l}(\mathbb{G})$  is a universal Polish group.

Katětov construction

< ロト ( 母 ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( ヨ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( コ ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 )

Dana Bartošová — Extreme amenability of linear isometries of  ${\mathbb G}$ 

크

#### Theorem (B-LA-M)

 $d \leq m$ 

Dana Bartošová  $\Box$  Extreme amenability of linear isometries of  $\mathbb{G}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへ⊙

#### Theorem (B-LA-M)

- $d \leq m$
- r number of colours

Dana Bartošová Extreme amenability of linear isometries of G

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

#### Theorem (B-LA-M)

 $d \le m$ r - number of colours  $\varepsilon > 0$ 

Dana Bartošová Extreme amenability of linear isometries of G

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで
#### Theorem (B-LA-M)

 $\begin{array}{l} d \leq m \\ r \ -number \ of \ colours \\ \varepsilon > 0 \\ \exists n \end{array}$ 

## Theorem (B-LA-M)

 $d \le m$ r - number of colours

 $\varepsilon > 0$ 

 $\exists n$ 

for every colouring  $c : \operatorname{Emb}(l_{\infty}^d, l_{\infty}^n) \longrightarrow \{0, 1, \dots, r-1\}$ 

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー シタク

## Theorem (B-LA-M)

 $\begin{array}{l} d \leq m \\ r \ -number \ of \ colours \\ \varepsilon > 0 \\ \exists n \end{array}$ 

for every colouring  $c : \operatorname{Emb}(l_{\infty}^{d}, l_{\infty}^{n}) \longrightarrow \{0, 1, \dots, r-1\}$ there is  $i \in \operatorname{Emb}(l_{\infty}^{m}, l_{\infty}^{n})$  and  $\alpha < r$ 

## Theorem (B-LA-M)

$$\label{eq:states} \begin{split} & d \leq m \\ & r \ \text{-} \ number \ of \ colours} \\ & \varepsilon > 0 \end{split}$$

 $\exists n$ 

for every colouring  $c : \operatorname{Emb}(l_{\infty}^{d}, l_{\infty}^{n}) \longrightarrow \{0, 1, \dots, r-1\}$ there is  $i \in \operatorname{Emb}(l_{\infty}^{m}, l_{\infty}^{n})$  and  $\alpha < r$ 

 $i \circ \operatorname{Emb}(l_{\infty}^{d}, l_{\infty}^{m}) \subset (c^{-1}(\alpha))_{\varepsilon}$ 

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー シタク

## Theorem (B-LA-M)

 $d \leq m$ 

r - number of colours

 $\varepsilon > 0$ 

 $\exists n$ 

for every colouring  $c : \operatorname{Emb}(l_{\infty}^{d}, l_{\infty}^{n}) \longrightarrow \{0, 1, \dots, r-1\}$ there is  $i \in \operatorname{Emb}(l_{\infty}^{m}, l_{\infty}^{n})$  and  $\alpha < r$ 

 $i \circ \operatorname{Emb}(l_{\infty}^d, l_{\infty}^m) \subset (c^{-1}(\alpha))_{\varepsilon}$ 

#### Theorem (B-LA-M)

 $\operatorname{Iso}(\mathbb{G})$  is extremely amenable.

《曰》 《聞》 《臣》 《臣》

æ

 ${\cal G}$  - topological group

Dana Bartošová Extreme amenability of linear isometries of G

《曰》 《聞》 《臣》 《臣》

G - topological group  $f: G \longrightarrow \mathbb{R}$  is finitely oscillation stable if

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

 $\begin{array}{ll} G \mbox{ - topological group} \\ f:G \longrightarrow \mathbb{R} \mbox{ is finitely oscillation stable if } & \forall X \subset G \mbox{ finite and } \\ \varepsilon > 0 \end{array}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

- ${\cal G}$  topological group
- $f: G \longrightarrow \mathbb{R}$  is finitely oscillation stable if  $\forall X \subset G$  finite and
- $\varepsilon > 0 \; \exists g \in G \text{ such that } \operatorname{osc}(f \restriction gX) < \varepsilon.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

 $\begin{array}{l} G \ \text{-topological group} \\ f: G \longrightarrow \mathbb{R} \text{ is finitely oscillation stable if} \quad \forall X \subset G \text{ finite and} \\ \varepsilon > 0 \quad \exists g \in G \text{ such that } \operatorname{osc}(f \upharpoonright gX) < \varepsilon. \end{array}$ 

Lemma (Pestov)

TFAE

- G is extremely amenable,
- every  $f: G \longrightarrow \mathbb{R}$  bounded left-uniformly continuous is finite oscillation stable.

 $\begin{array}{l} G \ \text{-topological group} \\ f: G \longrightarrow \mathbb{R} \text{ is finitely oscillation stable if} \quad \forall X \subset G \text{ finite and} \\ \varepsilon > 0 \quad \exists g \in G \text{ such that } \operatorname{osc}(f \upharpoonright gX) < \varepsilon. \end{array}$ 

Lemma (Pestov)

TFAE

- G is extremely amenable,
- every  $f: G \longrightarrow \mathbb{R}$  bounded left-uniformly continuous is finite oscillation stable.

#### Theorem (Graham and Rothschild)

For every  $k \leq m$  and  $r \geq 2$ , there exists n such that for every colouring of the k-element partitions of n by r-many colours there is an m-element partition X of n such that all k-element coarsenings of X have the same colour.

# Approximate Ramsey property for finite-dimensional normed spaces

E,F - finite dimensional spaces  $\theta \geq 1$ 

 $\operatorname{Emb}_{\theta}(E, F) = \{T : E \longrightarrow F : T \text{ embedding } \& \|\mathbf{T}\| \| \mathbf{T}^{-1} \| \le \theta \}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Approximate Ramsey property for finite-dimensional normed spaces

E,F - finite dimensional spaces  $\theta \geq 1$ 

 $\operatorname{Emb}_{\theta}(E, F) = \{T : E \longrightarrow F : T \text{ embedding } \& \|\mathbf{T}\| \|\mathbf{T}^{-1}\| \le \theta\}$ 

#### Theorem (B-LA-M)

r - number of colours,  $\varepsilon > 0 \longrightarrow \exists H \text{ f.d. with } \operatorname{Emb}(F, H) \neq \emptyset$  such that for every

$$c : \operatorname{Emb}_{\theta}(E, H) \longrightarrow \{0, 1, \dots, r-1\}$$

 $\exists i \in \operatorname{Emb}_{\theta}(F, H) \text{ and } \alpha < r \text{ such that}$ 

$$i \circ \operatorname{Emb}_{\theta}(E, F) \subset (c^{-1}(\alpha))_{\theta - 1 + \varepsilon}$$

(日) (四) (日) (日) (日)

#### Theorem

Finite metric spaces satisfy the approximate Ramsey property.

Dana Bartošová Extreme amenability of linear isometries of G

#### Theorem

Finite metric spaces satisfy the approximate Ramsey property.

## Corollary (Pestov)

 $\operatorname{Iso}(\mathbb{U})$  is extremely amenable.

#### Theorem

Finite metric spaces satisfy the approximate Ramsey property.

#### Corollary (Pestov)

 $\operatorname{Iso}(\mathbb{U})$  is extremely amenable.

#### Theorem (Nešetřil)

Linearly ordered finite metric spaces satisfy the (exact) Ramsey property.

(1) metrizable

Dana Bartošová — Extreme amenability of linear isometries of  ${\mathbb G}$ 

◆□▶ ◆御▶ ◆注▶ ◆注▶ … 注 … のへで

- (1) metrizable
- $(2)\,$  contains every metrizable simplex as its face

《曰》 《聞》 《臣》 《臣》

- 31

- (1) metrizable
- (2) contains every metrizable simplex as its face
- (3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of Pmapping E onto F

- (1) metrizable
- (2) contains every metrizable simplex as its face
- (3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of P mapping E onto F

### LINDENSTRAUSS-OLSEN-STERNFELD

Properties (1),(2) and (3) uniquely determine P up to an affine homeomorphism.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

## (1) metrizable

- (2) contains every metrizable simplex as its face
- (3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of Pmapping E onto F

## LINDENSTRAUSS-OLSEN-STERNFELD

Properties (1),(2) and (3) uniquely determine P up to an affine homeomorphism.

#### POULSEN

The set of extreme points of P is dense in P.

## (1) metrizable

- (2) contains every metrizable simplex as its face
- (3) for every two faces E, F of P with the same finite dimension, there is an affine autohomeomorphism of Pmapping E onto F

## LINDENSTRAUSS-OLSEN-STERNFELD

Properties (1),(2) and (3) uniquely determine P up to an affine homeomorphism.

#### POULSEN

The set of extreme points of P is dense in P.

## FACT $T: \{0,1\}^{\mathbb{Z}} \longrightarrow \{0,1\}^{\mathbb{Z}}$ the shift $\Rightarrow T$ -invariant probability measures form P

 $S_n :=$  positive part of the unit ball of  $l_1^n$  – finite-dimensional simplex with n + 1 extreme points

イロト イロト イヨト イヨト 三日

 $S_n :=$  positive part of the unit ball of  $l_1^n$  – finite-dimensional simplex with n + 1 extreme points

 $\operatorname{Epi}(S_n, S_m) :=$ continuous affine surjections  $S_n \longrightarrow S_m$ 

 $S_n :=$  positive part of the unit ball of  $l_1^n$  – finite-dimensional simplex with n + 1 extreme points

 $\operatorname{Epi}(S_n, S_m) := \operatorname{continuous} \operatorname{affine} \operatorname{surjections} S_n \longrightarrow S_m$ 

AH(P) := group of affine homeomorphisms of P + compact-open topology

 $S_n :=$  positive part of the unit ball of  $l_1^n$  – finite-dimensional simplex with n + 1 extreme points

 $\operatorname{Epi}(S_n, S_m) :=$ continuous affine surjections  $S_n \longrightarrow S_m$ 

AH(P) := group of affine homeomorphisms of P + compact-open topology

(U)  $\forall n \exists \phi : P \longrightarrow S_n$  – continuous affine surjection (APU)  $\forall \varepsilon > 0 \ \forall n \ \forall \phi_1, \phi_2 : P \longrightarrow S_n \ \exists f \in AH(P)$  with  $d(\phi_1, \phi_2 \circ f) < \varepsilon$ 

 $S_n :=$  positive part of the unit ball of  $l_1^n$  – finite-dimensional simplex with n + 1 extreme points

 $\operatorname{Epi}(S_n, S_m) := \operatorname{continuous} \operatorname{affine} \operatorname{surjections} S_n \longrightarrow S_m$ 

AH(P) := group of affine homeomorphisms of P + compact-open topology

(U)  $\forall n \exists \phi : P \longrightarrow S_n$  – continuous affine surjection (APU)  $\forall \varepsilon > 0 \ \forall n \ \forall \phi_1, \phi_2 : P \longrightarrow S_n \ \exists f \in AH(P)$  with  $d(\phi_1, \phi_2 \circ f) < \varepsilon$ 

#### Theorem (B-LA-M)

(U) + (APU) characterize P among non-trivial metrizable simplexes up to affine homeomorphism.

 $\operatorname{Epi}_0(S_n, S_m)$  - continuous affine surjections preserving 0

Dana Bartošová Extreme amenability of linear isometries of G

## $\operatorname{Epi}_0(S_n, S_m)$ - continuous affine surjections preserving 0

#### Theorem (B-LA-M)

 $d \leq m$  and r natural numbers and  $\varepsilon > 0$  given  $\longrightarrow \exists n \text{ such that}$  for every colouring

$$c: \operatorname{Epi}_0(S_n, S_d) \longrightarrow \{0, 1, \dots, r\}$$

there is  $\pi \in \operatorname{Epi}_0(S_n, S_m)$  and  $\alpha < r$  such that

 $\operatorname{Epi}_0(S_m, S_d) \circ \pi \subset (c^{-1}(\alpha))_{\varepsilon}$ 

## $\operatorname{Epi}_0(S_n, S_m)$ - continuous affine surjections preserving 0

#### Theorem (B-LA-M)

 $d \leq m$  and r natural numbers and  $\varepsilon > 0$  given  $\longrightarrow \exists n \text{ such that}$  for every colouring

$$c: \operatorname{Epi}_0(S_n, S_d) \longrightarrow \{0, 1, \dots, r\}$$

there is  $\pi \in \operatorname{Epi}_0(S_n, S_m)$  and  $\alpha < r$  such that

$$\operatorname{Epi}_0(S_m, S_d) \circ \pi \subset (c^{-1}(\alpha))_{\varepsilon}$$

p - extreme point of P $AH_p(P) = \{ f \in AH(P) : f(p) = p \}$ 

## $\operatorname{Epi}_0(S_n, S_m)$ - continuous affine surjections preserving 0

#### Theorem (B-LA-M)

 $d \leq m$  and r natural numbers and  $\varepsilon > 0$  given  $\longrightarrow \ \exists n \ such \ that for \ every \ colouring$ 

$$c: \operatorname{Epi}_0(S_n, S_d) \longrightarrow \{0, 1, \dots, r\}$$

there is  $\pi \in \operatorname{Epi}_0(S_n, S_m)$  and  $\alpha < r$  such that

$$\operatorname{Epi}_0(S_m, S_d) \circ \pi \subset (c^{-1}(\alpha))_{\varepsilon}$$

p - extreme point of P $AH_p(P) = \{f \in AH(P) : f(p) = p\}$ 

#### Theorem (B-LA-M)

 $AH_p(P)$  is extremely amenable.

イロト イポト イヨト イヨト

 $G = \operatorname{Aut}(\mathcal{A}) - \mathcal{A}$  ultrahomogeneous

Dana Bartošová  $\Box$  Extreme amenability of linear isometries of  $\mathbb{G}$ 

 $G = \operatorname{Aut}(\mathcal{A}) - \mathcal{A}$  ultrahomogeneous  $G^* = \operatorname{Aut}(\mathcal{A}^*) - \mathcal{A}^*$  ultrahomogeneous expansion of  $\mathcal{A}$ 

 $G = \operatorname{Aut}(\mathcal{A}) - \mathcal{A}$  ultrahomogeneous  $G^* = \operatorname{Aut}(\mathcal{A}^*) - \mathcal{A}^*$  ultrahomogeneous expansion of  $\mathcal{A}$ Finite substructures of  $\mathcal{A}^*$  satisfy the Ramsey property and are rigid.

 $G = \operatorname{Aut}(\mathcal{A}) - \mathcal{A}$  ultrahomogeneous  $G^* = \operatorname{Aut}(\mathcal{A}^*) - \mathcal{A}^*$  ultrahomogeneous expansion of  $\mathcal{A}$ Finite substructures of  $\mathcal{A}^*$  satisfy the Ramsey property and are rigid.

**OFTEN**  $M(G) \cong \widehat{G/G^*}$
## Universal minimal flows

 $G = \operatorname{Aut}(\mathcal{A}) - \mathcal{A}$  ultrahomogeneous  $G^* = \operatorname{Aut}(\mathcal{A}^*) - \mathcal{A}^*$  ultrahomogeneous expansion of  $\mathcal{A}$ Finite substructures of  $\mathcal{A}^*$  satisfy the Ramsey property and are rigid.

**OFTEN** 
$$M(G) \cong \widehat{G/G^*}$$

| Structure $\mathcal{A}$    | $M(\operatorname{Aut}(\mathcal{A}))$                            | authors           |
|----------------------------|-----------------------------------------------------------------|-------------------|
| $S^{1}_{+}$                | $S^1_+$                                                         | Pestov            |
| $\mathbb{N}$               | linear orders on $\mathbb N$                                    | Glasner and Weiss |
| random graph $\mathcal{R}$ | linear orders on $\mathcal{R}$                                  | KPT               |
| Cantor space $C$           | maximal chains of                                               | Glasner and Weiss |
|                            | closed subsets of $C$                                           |                   |
| Lelek fan $L$              | $\operatorname{Homeo}(\widehat{L)/\operatorname{Homeo}}(L_{<})$ | B-Kwiatkowska     |

## Universal minimal flow of AH(P)

#### Theorem (B-LA-M)

$$M(AH(P)) \cong AH(\widehat{P)/AH_p}(P) \cong P$$

Dana Bartošová Extreme amenability of linear isometries of G

· □ > · (四 > · (回 > · (回 > ·

#### PROBLEM

What is the universal minimal flow of Homeo(Q)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

#### PROBLEM

What is the universal minimal flow of Homeo(Q)?

 $\mathcal{Q}$  is homeomorphic to P.

(日) (圖) (필) (필) (필)

#### PROBLEM

What is the universal minimal flow of Homeo(Q)?

 $\mathcal Q$  is homeomorphic to P.

### Theorem (B-LA-M)

Homeo(Q) admits a closed subgroup with the universal minimal flow being the natural action on Q.

#### PROBLEM

What is the universal minimal flow of Homeo(Q)?

 $\mathcal Q$  is homeomorphic to P.

#### Theorem (B-LA-M)

Homeo(Q) admits a closed subgroup with the universal minimal flow being the natural action on Q.

 ${\mathcal Q}$  with its natural convex structure.

### PROBLEM

What is the universal minimal flow of Homeo(Q)?

 $\mathcal{Q}$  is homeomorphic to P.

### Theorem (B-LA-M)

Homeo(Q) admits a closed subgroup with the universal minimal flow being the natural action on Q.

 ${\mathcal Q}$  with its natural convex structure.

Theorem (B-LA-M)

Aut( $\mathcal{Q}$ ) is topologically isomorphic to  $\{-1,1\}^{\mathbb{N}} \times S_{\infty}$ .

Dana Bartošová Extreme amenability of linear isometries of G

### PROBLEM

What is the universal minimal flow of Homeo(Q)?

 $\mathcal{Q}$  is homeomorphic to P.

## Theorem (B-LA-M)

Homeo(Q) admits a closed subgroup with the universal minimal flow being the natural action on Q.

 ${\mathcal Q}$  with its natural convex structure.

Theorem (B-LA-M)

Aut( $\mathcal{Q}$ ) is topologically isomorphic to  $\{-1,1\}^{\mathbb{N}} \times S_{\infty}$ .

#### Theorem (B-LA-M)

$$M(\operatorname{Aut}(\mathcal{Q})) = \{-1, 1\}^{\mathbb{N}} \times LO(\mathbb{N}).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

The universal minimal flow of Homeo(P) is its natural action on the pseudoarc.

《曰》 《圖》 《圖》 《圖》

The universal minimal flow of Homeo(P) is its natural action on the pseudoarc.

#### **IRWIN-SOLECKI**

 $(\mathbb{P},E)$  -  $\mathbb{P}$  the Cantor set, E closed edge relation and  $\mathbb{P}/E\cong P$ 

The universal minimal flow of Homeo(P) is its natural action on the pseudoarc.

### **IRWIN-SOLECKI**

 $(\mathbb{P}, E)$  -  $\mathbb{P}$  the Cantor set, E closed edge relation and  $\mathbb{P}/E \cong P$ Aut $(\mathbb{P}) \longrightarrow$  Homeo(P) continuous with dense image.

・ロト ・四ト ・ヨト ・ヨ

The universal minimal flow of Homeo(P) is its natural action on the pseudoarc.

#### IRWIN-SOLECKI

 $(\mathbb{P},E)$  -  $\mathbb{P}$  the Cantor set, E closed edge relation and  $\mathbb{P}/E\cong P$ 

 $\operatorname{Aut}(\mathbb{P}) \longrightarrow \operatorname{Homeo}(P)$  continuous with dense image.

#### Lemma (B-Kwiatkowska; Solecki)

 $M(\operatorname{Aut}(\mathbb{P}))$  is not metrizable.

・ロト ・四ト ・ヨト ・ヨ

Oligomorphic automorphism groups of countable structures have metrizable universal minimal flows.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへ⊙

### Oligomorphic automorphism groups of countable structures have metrizable universal minimal flows.

Good example

Aut( $\mathbb{P}$ ) is NOT oligomorphic.

Dana Bartošová Extreme amenability of linear isometries of G

э

## Non-metrizable universal minimal flow

### Theorem (Veech)

Locally compact groups have non-metrizable universal minimal flows.

・ロッ ・雪 ・ ・ ヨ ・ ・

## Non-metrizable universal minimal flow

#### Theorem (Veech)

Locally compact groups have non-metrizable universal minimal flows.

Good example

Aut( $\mathbb{P}$ ) is NOT locally compact.

Dana Bartošová Extreme amenability of linear isometries of G

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・



# OBRIGADA

Dana Bartošová Extreme amenability of linear isometries of  ${\mathbb G}$ 

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

∃ < <p>𝒫 < <p>𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅 𝔅</p